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Abstract--The paper is concerned with the effects of electric charges on the motion of metallically coated 
particles in fluidized beds. It treats a particular kind of collision process between such particles, which 
happens on the upper layers of such a bed. Photographic studies are provided displaying the phenomenon. 
In order to explain it, the interaction of a pair of spherical charged particles surrounded by a dielectric 
fluid is analyzed theoretically. It is shown that the peculiarities of the collision are related to the fact that 
two conducting particles of the same diameter, even if they have charges of the same sign, but of different 
magnitude, attract each other when they approach close enough and that they repel after collision because 
of the charge redistribution between them. It turns out that the experimental observations are 
well-described by this theoretical picture. 
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1. I N T R O D U C T I O N  

This paper concerns particle motion caused by electric charges, observed by the authors during 
velocity measurements in a homogeneous fluidized bed. When such beds were produced by 
dielectric fluids, particle motions on top of the bed, controlled by electrostatic rather than by fluid 
dynamic and/or gravity forces, were observed. 

The phenomenon appeared as follows. In order to get accurate results of velocity 
distributions of the fluid in the inner part of the fluidized bed by optical methods (LDA), a 
refractive index adjustment of the fluid and particles (glass spheres of diameter D = 0.315 era) 
had to be performed. The adjustment eliminated the spheres optically and made the entire 
bed transparent; the glass particles became invisible. In order to get information on the motion 
of the particles, a small sample of them had been covered by a thin metallic sheet to make them 
visible. 

It was intended to keep these few nontransparent particles in their fluid dynamic and 
gravitational behaviour very close to the uncoated spheres. It turned out, however, that the coated 
particles developed a behaviour of their own. Most of them moved out of the bed and gathered 
in a layer above it. Sometimes, they reached heights up to 5 to 10 cm and then fell down close to 
the bed. There seemed to be a mechanism present, which kept the metallic particles, to a large 
extent, above the bed and concentrated them near the pipe axis. 

A remarkable motion was observed when a metallically coated sphere settled down due to gravity 
and hit another such sphere floating above the fluidized bed: when the settling particle approached 
close enough to the lower one (a few mm) it was strongly accelerated towards it; after contact it 
was shot rapidly back upwards. This phenomenon can hardly be described by inertial, friction, or 
gravitational effects, but rather naturally as one caused by electric charges. 

In the paper the experimental observations are described and it is shown that they can be 
explained in terms of electrostatic forces between electrically charged conducting spheres. The 
question of the origin of the charges--most likely tribologic--is not pursued. 

The reason for the relevance of electrostatic forces between two spheres appears as follows. If 
one assumes that two (identical) spheres carry charges Q~ and Q2, then the forces between them 
have the following characteristics: 

• O102 < 0. There is always an attractive force between the charges, essentially of 
Coulomb type. 
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• QI = 0,  Q2 ~ 0. In this case, particles of finite size develop an attractive force 
between the charge Q: and the charge distribution induced on the other sphere. 
This force is significant only when the surface distance of the spheres come down 
to the order of magnitude of the sphere size (radius); only then is the induced 
charge distribution significant. 

• Ql Q2 > 0, Q~ # Q2. Charges of the same sign, but unequal magnitude develop a 
(dominantly Coulomb) repulsion between the spheres at large distances. At small 
enough distances the bigger charge induces on the other sphere a charge density 
of opposite sign, which may come to dominate the (Coulomb) repulsion. There is 
a certain limiting distance, depending on the ratio [(Ql - Q2)/(QI d- Q2)] 2, such that 
above it the two spheres repel, whereas below it they attract each other. 

• QI = Q2.  For equal charges two identical spheres are subject at all distances to 
repulsive electric forces. 

With these characteristics of charged spheres in mind, one may imagine the following situation. 
Two conducting spheres, one settling from some distance above the fluidized bed and the other 
settled just on top of it, carry the charges QI = 0, Q~ > 0, respectively. The settling upper sphere 
will first perceive only the usual gravity and viscosity forces leading to a rather constant settling 
velocity. At a short distance from the lower sphere the attractive electric force accelerates it until 
the two spheres come into contact. While in contact, the particles redistribute their charges 
QiI-~Q~, Q~-~Q~, Q~ = Q~2, Q~ + Q~ = Q~ + Q~. Charge equality between them then leads to a 
repulsive electric force. If the charges Q~ = Q~ are big enough, the formerly settling sphere will be 
strongly accelerated upwards, the other downwards. This acceleration of the upper sphere lasts 
until the repulsive Coulomb force becomes smaller than that of gravity. 

The observed phenomenon is described in section 2. The theoretical explanation is presented in 
sections 3 and 4, followed by remarks and conclusions in section 5. 

2. EXPERIMENTS 

2.1. Equipment 

A test loop including a pipe test section, a fluidization bed, surrounded by a "viewing box" of 
square cross-section, was set up. The column (figure 1) was constructed of a Duran 50 glass pipe 
with 63 mm i.d. and a length of 1000 mm. The test section was designed to permit visualization of 
the flow inside the fluidized bed and velocity measurements with an optical system (LDA). The 
fluidized bed consisted of 3.15 + 0.1 mm dia Duran glass spheres, a small fraction of which was 
gold-coated. Brass gauzes at the upper and lower ends of the pipe were used in order to prevent 
stray particles from leaving the test section. The test liquid was a mixture of two diesel oils. 
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Figure 1. Test section: I, fluidized bed; 2, lower gauze; 3, viewing box; 4, LDA system. 



PARTICLE MOTION VIA ELECTRIC CHARGES 93 

The motion of the coated particles in and above the fluidized bed was registered by a Hycam 
high-speed photographic camera, at 200-500 frame/s. The test section was illuminated by two 
quartz-halogen light sources (of 2000 W each) through an opalescent glass sheet. 

The pictures taken by the high-speed camera were stationary projected on a screen. Because of 
refractive index matching the uncoated spheres were hardly visible on these pictures. The positions 
on the screen of selected coated particles were then marked by dark circles for successive frames 
of the high-speed camera. The resulting image of the particle motion was then photographed with 
a normal compact-film camera. 

2.2. Results 

The parameters of the experiment were as follows: 

electric conductivity 
fluid density 
particle density 
kinematic viscosity 
volume flow rate 
pipe diameter 

t7 < 10 -ll D-l /on,  
pf ---- 0.846 g/cm 3, 
pp ---- 2.286 g/on3, 

v = 4.53 mm2/s, 
I? ~ 12 l/min, 
d= 63.5 mm. 

The increase in diameter and weight of the glass particles due to the gold coating was neglected. 
In order to produce the specific motion of the coated particles after a prolonged shutdown 

(e.g. overnight) of the test loop, a start-up time of about 30 min was necessary. After the 
establishment of a homogeneous fluidization, glass spheres were entrained, in areas of greater 
velocity, to a height of 1-2 cm above the bed surface. The uncoated spheres drifted back into the 
fluidized bed, whereas the coated ones continued to gather roughly 3 on  above the bed surface until 
about 50% of them accumulated in this region. Figure 2 is a photograph of such coated particles 
floating 30 mm above the bed surface. 
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Figure 2. Floating layer of coated spheres above the Figure 3. Collision of two conducting spheres. 
fluidized bed. 
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Figure 4. Rise of a sphere after collision. Figure 5, Settling of spheres after stopping the fl0w. 

These coated spheres showed peculiar collision phenomena, which were not observed for the 
uncoated ones. When two such spheres approached the mentioned zone, they first attracted and 
then, upon contact, repelled with large axial and weak radial acceleration. In the case of an axial 
collision a sphere was typically carried at high speed to a height of 7-8 cm above the suspended 
layer before settling down slowly. In figure 3 the instant of collision of two marked spheres is 
visualized according to the procedure described above. In figure 4 the motion of two coated spheres 
after collision is shown. The sphere accelerated upwards reached a maximal height, sank a little 
and then rested in the foating layer. The sphere accelerated downwards in the direction of the 
fluidized bed interacted there with particles in the bed and was finally stopped in the bed, as can 
also be seen in figure 4. Different particles were subject randomly to this process. So an effective 
equilibrium existed in this exchange of particles and the number of spheres in the fluidized bed 
remained essentially constant. 

The coated spheres in the fluidized bed collided in a similar fashion, but the induced motion was 
dissipated through interaction with other particles in the bed. 

When the fluid stream was suddenly stopped, the fuidized bed settled down as a solid bed, but 
the coated spheres above the bed remained suspended for a few seconds and then settled in the 
middle of the bed surface. In figure 5 this sedimendation process is shown. The position of the spheres 
has not been marked here in constant time intervals, in order to make the form of the trajectory 
easier to recognize. The particle marked in the upper part of the figure started 450 pictures after 
the stop of the flow and the collapse of the fluidized bed to a fixed bed, i.e. 9 s after stopping (because 
of the recording velocity of 50 picture/s). The whole process shown in this figure lasted 23.4 s. 

3. EQUATION OF PARTICLE MOTION AND FORCES 

3. I. Equation of  motion 

The motion of the centre of mass x of a solid spherical particle of radius R (dia D = 2R) and 
density pp in a Newtonian fluid of viscosity ~ and density pf (# -- ply) is described, even at low 
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velocities, by a rather complicated equation (e.g. Maxey & Riley 1983; Parshikova 1983). This 
equation simplifies considerably if the flow of the fluid is assumed to be uniform and if the Basset 
history term is neglected: 

d2x 
rnp ~ = Fo + FI + FD + FE. [1] 

In the range of low Reynolds numbers, where [1] has been derived, the forces have the expressions: 

F G -- (mp - mf)g (gravity force) 

1 d2x 
FI = - ~  mr dt 2 (inertial force, added mass) 

FD= - 6 x / ~ R ( ~ - ~ - u )  (resistance force) 

FE = to be described (electrostatic force). 

[2] 

The significance of the parameters here is as follows: mp---(4/3)nppR s is the particle mass; 
mr= ( 2 / 3 ) n p r R  s is the added mass of the sphere; g = (0, 0 , - g )  is the vector of gravitational 
acceleration; and u is the fluid velocity at the site of the particle. The gravitational force Fo needs 
no further comment. The inertial force F~ is connected with the geometric form of the particle, since 
this influences the amount of fluid accelerated by its motion. For the drag force FD at low particle 
Reynolds numbers, 

I - - U  

Re = , [3] 
v 

of about Re ~< 0.1 (e.g. Batchelor 1983), the Stokes formula may be applied. For higher values of 
Re one has to introduce empirical expressions established for the drag force. At these values of 
Re, applying empirical formulae for the drag force in the equation of motion for a particle, one 
expects to get still at least qualitatively good results, of practical use. 

Since in the situation considered in this paper one expects rather high Re, it is convenient to 
have an appropriate parametrization of the drag law over a wide range of Re. If one writes 

FD = -- 3xofvD '~ -- u CD, [41 

with CD = I for the Stokes force, then a satisfactory form of FD for Re ~< 105 is given by Brauer 
(1971): 

I 12 I CD= I +~Re / + ~--~ Re. [5] 

The exact formula for the coefficient CD is not important here, since it is not expected that the 
results will depend on the precise analytic form of the drag force. 

There remains the other external force FE, which in the problem considered here is of an electric 
nature. For particle velocities of the order of several m/s one may safely consider the electric forces 
as being of electrostatic nature. The main observations described in the previous section can be 
explained essentially by the motion of an electrically conducting particle under the influence of 
another particle at rest of the same kind. Therefore, the introduction of the correct expression for 
the electric force is important and needs special consideration. As long as the diameters of the 
particles are negligible compared to their distance, their electrostatic interaction is that of pointlike 
charges and the force is the corresponding Coulomb force. For distances of the order of the particle 
diameter there appear, however, strong induction phenomena which cause a redistribution of the 
charges on the particle surfaces. The forces no longer depend exclusively on the values of the total 
charges but also on their distributions. In particular, the description of the collisions between such 
finite size particles needs a detailed analysis of the electric forces between conducting spheres of 
finite diameter. 
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3.2. Electostatic forces 

The electrostatic energy U of two conducting spherical particles of radii R is determined by their 
charges Q~ and Q2, by the dielectric constant E of the nonconducting medium wherein they are 
situated and by their (surface) distance z. For the situation sketched in figure 6, the electrostatic 
energy can be written as 

(Qi + Q2) 2 1 (Q, - Q2) 2 1 
U(z)  = 4E CH + C1~ "1- 4E Cll -- CI2 [6] 

in terms of two coefficients CH and Cm: which depend only on the distance z (and on the radius 
R, as a parameter). The derivation of [6] as well as the expression of these coefficients can be found, 
for example, in Buchholz (1957) or Kottler (1927). For the present considerations it will be enough 
to quote the corresponding results: 

sinh ½ 
C.  (z) = R = sinh(n - ½)~' [7] 

sinh 1 
- g .  ~ [8] C,2(z) = ~ sinh n0e 

- I  

and 

;:'n f' +[(' + z ,  
z 

cosh ~ = 1 + - ~ .  [9] 

These series expansions converge for all values of z > 0; the rate of convergence deteriorates as 
one approaches smaller values of z and at z = 0 the series diverge. 

At large distances, z~oo ,  the coefficients CH and Ci2 behave like 

CH ~ R  

and 
R 2 

C l 2  ~ - - - -  
Z 

Therefore, the electrostatic energy tends to 

1 
lira U(z) = ~ (Q~ + Q~) ,  [10] 
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Figure 6. Geometric configuration of two 
identical (conducting) spheres. 
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Figure 7. Normalized electrostatic energy U(z)[4~R/(QI + Q2) 2] of two 
conducting spheres of radius R, as a function of the distance z. 
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the sum of the individual energies of the two spheres. The behaviour of U(z) (suitably normalized) 
is represented in figure 7. 

As a consequence, one gets for z ~ oo the behaviour of the electrostatic force FE (z)  = (0, 0, FE (z)) ,  

dU(z) 
FE(z) = dz [11] 

acting on the upper sphere (having the centre coordinates x = (0, 0, z + R)) in the configuration 
of figure 6 due to the presence of the lower sphere (of centre coordinates x0 = (0, 0, -R) ) :  

+ R e 
FE(Z) ~ 2 ER 2 z5 k~__ + ' " .  [12] 

This force depends essentially upon whether the quantity Q~ Q2 vanishes or not. If both charges 
are different from zero, the force is of Coulomb type for z~oo ,  QIQ2/Ez 2. On the contrary, if 
Q~ Q2 = 0 because of say Q~ = 0, then the force behaves like z-5, being thus of short range. The 
force is attractive in this case and dependent on the third power of the particle radius (R3). It 
represents the interaction between the charge Q~ # 0 and the induced charge distribution (mainly 
a dipole) on the other sphere. 

For the present investigations, the electrostatic force at small particle distances is of special 
interest. Since the series expansions [7] and [8] are not well-suited for the analysis of its behaviour, 
one has to use an asymptotic short distance expansion (e.g. Buchholz 1957): 

C t l + C l 2 = 2 R s l n h - 2  _ 12 2 1440 \2]  + 0  [13a] 

and 

[(C+ln ! ;  l~t 7 /~x~3 ((tX;5;] 1 

2 - - + C n = - ~ R  sinh ~t ]--~-~+~--.-~k-~) + O  ~ , 

2 

wherein C = 0.57721566 is the Euler constant. These expansions can be expressed by 

~t ( z ~  '/2 

in terms of z/R. They give 

[13b] 

and, therefore, 

lim (Cu + Cl2) = R In 2 [14] 
z~0 

lim U(z) = (Qi + Q2) 2 1 
~o 4eR In 2' [15] 

which shows that the electrostatic energy of the spheres is, in the limit of contact, dependent only 
on their total charge Q1 + Q2. They also show that the behaviour of the force FE(z ) near contact 
is essentially decided by Cu - C12, i.e. by the second term in [6]. Otherwise stated, the behaviour 
of the force at small distances z depends on whether Q~ = Q2 or not. If the charges are equal 
(QI = Q2 = Q), then because of 

lim d 1 ( ~ )  z~o -~z (Cu + CI2) = R I n 4 -  [161 

there will be a finite repulsive force at contact 

lira F,~(z) = In 4 - [17] 
~-.0 ER 2 (In 2 )  5 12 " 

MF 16/I--G 
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Since 

, ,(1.4 06149 
(ln 2) 5 3 

this force is somewhat weaker than the Coulomb force at point charges (QI = Q2 = Q) located at 
a distance 2R from each other. If on the contrary Q~ ~ Q2, the force is decided for z--*0 by 
Cn - Cl2. Since 

~1  R 
Cl l  - -  Cl2 ~, ~ R  In  [18] 

A z 

and 

it is given by 

d 1R 
. . . . .  , [191 dz (CII CI2) "~ 2 z 

(Q1 - Q2) 2 1 

FE(Z) ~, 2ER2 Z{lnZ,~2.  [20] 

R 

The force is in this case attractive for small enough distances and even gets infinite at contact, with 
a singularity weaker than R/z (to be compared with the Coulomb singularity 1/z2). 

These considerations concerning the behaviour of the electrostatic force FE(Z) at large distances 
(z-* oo) and near contact (z--*0) already give a good qualitative background to the considerations 
in the introduction concerning the expected motion of charged conducting particles and the 
experimental observations given in section 2. They show that: 

(a) At large distances (z--* ~) ,  there is an attractive force for charges Ql Q2 ~< 0 and 
a repulsive (Coulomb) force for Q~Q2 > 0. Thereby, the attractive force is 
Couloumb-like for nonvanishing charges (Ql Q2 < 0) and of short range z-S if 
one charge vanishes (Qi Q2 = 0). 

(b) At small distances (z---,0), there is a finite force (essentially of Coulomb type) 
when the charges are equal (QI = Q2) and a singular attractive force otherwise 
(Ql # Q2), of behaviour weaker than z -l. 

In the region in between nothing special is expected to happen as long as the charges have opposite 
sign (Qt Q2 < 0): there is an attractive force changing from the behaviour 1/z 2 at large distances 
to l/Rz[In(z/R)]: near contact. If one charge vanishes (QI Q2 = 0), an attractive force is expected, 
changing in its behaviour from R3z -5 at z--*~ to 1/Rz[ln(z/R)] 2 at z--.0. This is confirmed by 
numerical computation. 

When the charges obey Q~ Q2 > 0, the estimates for large and small distances require the existence 
of a region of attraction at small distances and of one of repulsion at large distance, as long as 
the charges are not precisely equal. When Qt = Q2, the estimates are compatible with a repulsive 
force between the spheres for all distances. This indeed happens. Figure 8 represents the connection 
between the charge ratio QI/Q: and the distance (ze) where the regions of attraction and repulsion 
meet. The curve is the graphical representation of 

FE (ze) = dz . . . .  

it shows that z,~oo for Qi/Q2--,O , and z,~O for QJQ2--¢l, as suggested by the qualitative 
discussion. 

It should be stressed again that the appearance of attractive forces between electric 
conductors at small distances, when carrying charges of the same sign, is an induction phenomenon 
which is essentially related to the finite extent of the conductors. It may be estimated that the 
distance range "z" of the appearance of these forces is roughly of the order of the size of the 
conductors. 
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Figure 8. Relation between the equilibrium position z, of 
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Figure 9. Evolution in time of the height z of the sphere 
under the influence of: (a) gravitation and realistic drag; (b) 
electric force between two conducting spheres added to (a), 
with (Ql + Q2)/2---100e.s.u. and QI/Q2--0 before colli- 
sion; (c) same as (b), except that Q~/Q2 = 0.005. Initial data: 

to =0,Zo= 10cm,~o = 0. 

4. DESCRIPTION OF PARTICLE COLLISION 

4.1. Qualitative description 
In order to compare the description of particle motion in the fluid with observation one needs, 

in addition to the equation of motion [1], the parameters entering this equation and a reasonable 
knowledge of the initial conditions. The relevant parameters for the present considerations are the 
fluid velocity u and the charges QI and Q2. The experimental situation described implies a pipe 
flow (dia d = 63.5 mm) of  rate around /Y = 12 l/rain, which corresponds to a mean fluid velocity 
t~ = 6.32 cm/s and a (mean) Reynolds number Re = ~d/v = 8.85. l02 well in the laminar range. The 
fluid velocity on the pipe axis is then 2~ = 12.64 cm/s. 

Before taking into account electric forces it will be adequate to develop an idea of the effects 
of the other forces, gravitation and friction, on the motion of particles. Assuming that the mobile 
sphere moves on (or close to) the pipe axis in the vertical direction and its motion starts at a height 
z0~ 10cm above the other sphere (at rest), with zero velocity, $0=0, as suggested by the 
experimental situation, one possesses all elements for the (qualitative) investigation of these forces. 
With gravity (and inertial force) alone, g = (0, 0, - g ) ,  [l] has, of course, an elementary solution, 
which gives a time to of "free" fall in the fluid, until the second sphere is reached, of 

t ~ = ( ~  ° PP'k½Pf~ '/2, z(tG) =0 .  [21] 
-pp- p f ]  

This time is, with the adopted data, t~ = 0.1959 s and the collision velocity $(t~) = - 102.09 cm/s. 
Addition of the Stokes drag force still keeps the equation of  particle motion elementary integrable. 

The time t s of  "Stokes" fall will be (for u = l0 cm/s) ts = 0.2198 s, and the collision velocity 
i(ts)  = - 87.53 cm/s. 

At the moment of  contact the particle Reynolds number would be about Re = 678, which is far 
beyond the validity of the Stokes drag law. Therefore, an empirical drag law [4, 5], valid for a wide 
range of Reynolds numbers, has to be chosen. Thereby the equation of motion becomes nonlinear 
and has to be solved numerically. The stationary settling velocity is then determined from the equation 

1 1'2 1) ~-~ [22] 

for the Reynolds number Re. Its solution for the data of the problem is 206.489 and gives a relative 
velocity 

~ - u = - 29.695 cm/s, [23] 
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i.e. a stationary settling velocity of 

~ = - 19.695 cm/s. [24] 

This velocity is to be compared with ~G + U = -- 193 cm/s, the settling velocity of the Stokes drag 
law. From this comparison one may infer that the "relaxation" time will be correspondingly smaller 
than that of the Stokes law, 

mp +½mr 1 D 2 ( 1  pp) [25] 
+ = = f 8  

(=0.39 s). This, in turn, allows a reasonable estimate of the fall time to by considering that the 
particle falls from the beginning with the settling velocity 

z 
tD ~> --__ = 0.5077 S. [26] 

Zoo 
Numerical computation shows that 

to = 0.547 s [27] 

and that the collision velocity is +(to) = - 19.695 cm/s, i.e. already the settling velocity. The settling 
velocity is, in fact, attained after about I cm of fall and a time of 0.1 s. This implies that, if the 
initial position z0 of the sphere were lowered to 1 cm, the drag and gravity forces would not change 
the picture of motion, leaving, for example, the collision velocity, and thereby the whole later 
development of motion, unaltered. 

As far as the nature of the collision of the falling particle with another at rest is concerned, it 
is not unreasonable to assume that it is elastic, i.e. the kinetic energy does not decrease and that 
the recoil is taken over by the support of the fixed sphere. Then, the velocity of the falling sphere 
will only change sign by the collision at z = 0 and keep its magnitude. 

Electric forces may, of course, change the described picture, as will be seen in the following. 
It is appropriate to ask how a particle arrives at the height z0, which was taken as initial position 

in the investigation of its motion. The mechanism has to have connection with the electric charges 
the particles bear, although it can not be traced precisely. It can, however, lead to the question 
about the order of magnitude of the electric charge necessary to keep one sphere above the other 
at rest against gravity and drag force at a height of about z0. In order to estimate it, it is enough 
to consider for the electric force the Coulomb law. For equal charges Qt = Q2 ( = Q) one gets hereby 

Q = ( - F ~  - FD)'/2w/~E(zo + D), [28] 

with z0 = 10 cm about Q = 66 e.s.u. 
If one now develops the scenario that a particle falls, with a charge of say Q) = 140 e.s.u, from 

the initial position of about z0 = 10 cm with zero velocity ~0 = 0, down towards a second particle 
of zero charge Q2 = 0, then in the absence of the Coulomb force (Qt Q2 = 0) the motion has to be 
dominated by gravity and drag forces to distances where the induction forces start to get significant. 
When these forces are felt, the sphere should be accelerated, at very small distances very strongly, 
since the attractive force gets (singularly) large. The velocity should thereby stay, however, finite, 
since the singularity of the force is integrable. 

There remains now to be investigated qualitatively the motion when both charges are different 
from zero. In the present experiments it is not to be expected that Qt Q~ < 0, but even if this 
happens, the only effect will be an additional acceleration of the falling. If Q~ Q2 > 0, the falling 
will be accelerated at first if z0 lies above the equilibrium position: 

(Ql Q2) t/2 (--FG -- FD) t/2 -- D. [29] 
,/7 

Then it will be decelerated until the height z of transition from repulsive to attractive force is 
reached (if at all!), below which again acceleration takes place. If in the deceleration region the 
particle reaches zero velocity, it will return upwards and in the long run it will achieve an oscillatory 
behaviour around the equilibrium position [29]. 

As an illustration, take ½(Qt + Q2) = 100 e.s.u., Q2/Q~ = 0.005, which m e a n s  Qt Q2 = 198 e.s.u. 2. 
Then the approximate equilibrium position will be z = 1.878 cm, or z/R = 11.924. For the charge 
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ratio Q2/Q~ = 0.005 the transition point from repulsion to attraction lies at z/R = 5.435, below the 
expected equilibrium position. For these data one thus expects the approach to equilibrium without 
collision. 

In the following, quantitative computations will be presented. 

4.2. Quantitative description 
The equation of motion [1] has been solved numerically, with the forces F G and F I given by [2], 

the drag force F D by [4] and [5] and the electric force FE by [11]. The physical constants have been 
chosen according to the experimental situation described in section 2 and the total electric charge 
Ql + Q2 has been varied in the range 100e.s.u. ~< QI + Q:~200e.s.u.  The time interval of 
investigation is determined by the fall with the realistic drag law and an initial height of about 
z0 = 10 cm; the collision phenomena of interest will take place within 1 s. The algorithm of solution 
is a (standard) Runge-Kutta method of fourth order. The only problem in computation to mention 
is, that the equation gets singular at z = 0 because of the divergence of the electric force. But it 
is rather harmless, because the velocity is not infinite at z = 0, although the acceleration (force) 
is, and for small positive values there is the asymptotic expansion, due to [13], of the electric force, 
which one can use instead of the badly convergent series expansions [7] and [8]. So in the last step 
of computation before collision one has only to take care not to have to compute the force precisely 
at z = 0. One can get rather good quantitative estimates of the velocity ~c near z = 0 by considering 
appropriately the energy theorem. An example of such an estimate, with (Q~ + Q2)/2 = 102 e.s.u., 
is 

- 848 cm/s < ~c < - 826 cm/s, [30] 

with a precision of about 2.5%. In principle, an arbitrarily precise value of the collision velocity 
may be achieved. Practically, however, the computations are performed close to z = 0 and the last 
computed velocity is identified with ~c, the collision velocity. Thereby the collision velocity is 
underestimated. For the trajectory after collision, this underestimate plus the hypothesis of elastic 
reflection (incident velocity = emergent velocity) amounts to the fact that in reality the emergent 
velocity (as computed) is smaller than the real incident velocity: the (computational) underestimate 
of the incident velocity amounts to a degree of inelasticity in the particle collision. Therefore, even 
if there is a velocity underestimate of about 10%, this amounts to a collision with about 20% of 
loss in kinetic energy, which is a physically entirely realistic result. 

The computing algorithm has been checked first without the (singular) electrostatic force. The 
computation with gravity and realistic drag force shows that stationary settling is indeed achieved 
after a distance of about 1 cm. In figure 9 this motion is represented for the purpose of comparison. 
Also given are two other trajectories determined by electrostatic forces. One trajectory starts at 
z0 = 10 cm with ~0 = 0 (at t = 0) in the situation where only one particle is electrically charged: 
Q~ = 0, Q2 = 200 e.s.u, before collision. 

One notices that down to small distances (about 2 cm) the (short-range) electric force is not felt; 
the trajectory coincides with that given in the absence of an electric force. Then one sees the 
increasing (attraction and) acceleration. At z = 0 the charge redistribution takes place to 
Q~ = Q~ = 100 e.s.u. (assumed to be instantaneous) and the following steep rise is the consequence 
of the strong repulsive Coulomb force. An underestimate of the recoil velocity, i.e. an inelastic 
collision leads only to a very small change in the rise of the particle after collision. It turns out 
that the rising to equilibrium is highly insensitive to the recoil velocity ;~ at z = 0. 

Again, for the purpose of distinguishing between short- and long-range forces during the 
downwards motion before collision, the trajectory with charges of about Q~ = 1 e.s.u, and 
Q2 = 199e.s.u. (Q1 + Q2 =200, Q1/Q2 = 0.005) is shown in figure 9. The (long-range) Coulomb 
force is perceived on practically the whole trajectory of the particle and prevents the approach of 
the two spheres to contact. 

5. CONCLUSIONS AND COMMENTS 

A particular kind of collision phenomenon of electrically conducting particles in a nonconducting 
fluid, above a fluidized bed, has been investigated in the present paper. In the experiment performed 
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a strong acceleration of two such spheres towards each other before the collision has been observed, 
followed by a strong acceleration away from each other after the collision. This behaviour cannot 
be explained by hydrodynamic forces, viscous or inertial. Although the motion before collision has 
some similarity with what Fortes et al. (1987) describe as drafting and kissing, an inertial effect 
associated with wakes, the tremendous acceleration observed after collision differs entirely from 
their tumbling phenomenon. It can however be explained, even rather quantitatively, in a natural 
way by the specific character which the electrostatic force between conducting spheres takes at 
distances of the order of their diameter: as a consequence of induction this force becomes attractive, 
even if the spheres carry (total) charges Q~ and Q2 of the same sign, provided Qj # Q2. 

Because of the fact that the phenomenon is dominated by electrostatic forces, it is not necessary 
to insist in its description on the precise equation of motion of the particles in the fluid, unless a 
high precision comparison between experiment and theory is considered. Such a comparison would 
then have to take, of course, into account finite particle distance corrections to viscous and inertial 
forces of the fluid, at lower Reynolds numbers, and to face the difficult question about the meaning 
and precise form of the equations of motion of particles at high Reynolds numbers. 
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